A Regiospecific Synthesis of 2-Azaanthraquinon-3-ones via a Hetero Diels-Alder Reaction with Bromonaphthoquinones

Boufelja Bouammalı, Félix Pautet, Houda Fillion*

Laboratoire de Chimie Organique, Institut des Sciences Pharmaceutiques et Biologiques, Université Claude Bernard, 8, avenue Rockefeller, F-69373 Lyon Cedex 08, France

Mohamed Soufiaou

Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, Département de Chimie, Faculté des Sciences, avenue Ibn-Batouta, Rabat, Maroc

(Received in Belgium 5 February 1993)

Key Words Diels-Alder, 2-azadiene, bromonaphthoquinone, 2-azaanthraquinon-3-one

Abstract The Diels-Alder reaction between 2-azadienes and 2- or 3-bromo-5-substituted naphthoquinones (R3=OH, OAc, OMe) led to a regiospecific synthesis of the corresponding 2-azaanthraquinon-3-ones The results indicate that the bromine atom exerts a stronger regiochemical control in these cycloadditions than the 5-substituent.

The usefulness of 2-aza-1,3-butadienes in the Diels-Alder synthesis of pyridones and piperidones derivatives has been well established ¹ In order to obtain some polysubstituted 2-azaanthraquinon-3-ones of biological interest, we had investigated the cycloadditions of 2-azadienes 1 upon 5-substituted naphthoquinones $2^{2,3}$ A mixture of the regionsomeric 2-azaanthraquinon-3-ones 3 and 4 was then obtained (Scheme 1) The cycloadditions were more regioselective with juglone 2 (R₃=OH) and its methyl ether than with acetyl juglone

Scheme 1

In the case of 2 (R_3 =OH), the structures of the major regionsomers 3 were in good agreement with the known directing effect of the 5-hydroxy group ⁴ Starting with methyljuglone, formation of compounds 4 as the major products can be accomodated by the donor effect of the methyl group. The poor and the opposite regioselectivity generally observed with 2 (R_3 =OAc) is also in accord with the literature ⁵

These cycloadditions being generally unsatisfactory in terms of yields and separation of the regionsomers, we turned our attention to the use of 2- or 3-bromo-5-substituted naphthoquinones 5 and 6 (R_3 =OH, OAc, OMe) As these compounds are more electron deficient than quinones 2, they should be more reactive towards azadienes 1 Furthermore, the bromine atom would exert a stronger regiochemical control in these cycloadditions than the 5-substituent (R_3 =OH, OMe) since the electron-rich end of a transoid diene is known to add exclusively at the unsubstituted carbon of bromonaphthoquinones ⁶⁻⁸

RESULTS AND DISCUSSION

Thus, azadienes 1 reacted at reflux of chloroform with bromoquinones 5 and 6 to give regiospecifically the corresponding 2-azaanthraquinon-3-ones 3 and 4 (Scheme 2 and Table 1)

The reactivity of bromonaphthoquinones 5 and 6 towards azadienes 1 is higher comparatively to quinones $2^{2,3}$ A high yield increase in compounds 3 or 4 is particularly observed with the 5-acetoxy (5b or 6b) and the 5-methoxy (5c or 6c) bromonaphthoquinones As examples 32% of a mixture of 3bb+4bb was obtained with quinone 2 (R₃=OAc), while starting with 5b or 6b the yields in 3bb or 4bb were respectively 82% and 88%, similarly, 51% of a mixture of 3ac+4ac was obtained from 2 (R₃=OMe) whereas the yields in 3ac or 4ac were respectively 90% and 95% when bromonaphthoquinones 5c or 6c were used Furthermore, due to the elimination of hydrogen bromide from the primary adduct, hydrolysis of the 3-silyloxy group occurred without addition of hydrofluoric acid

Azadiene	R	R ₁	R ₂	Quinone	R ₃	Reflux time (h)	Yield %	Product
1 a	ı-Pr	н	н	5a	OH	2	91	3aa ²
1 b	Et	Mic	н	5 a	OH	2 5	92	3ba ²
1 c	ı-Pr	Н	Me	5a	OH	4 5	64	3ca ²
1 d	Et	Me	Me	5a	OH	25	85	3da ²
1 a	1-Pr	Н	н	5 b	OAc	3	83	3ab ²
1 b	Et	Me	н	5b	OAc	3	82	3 bb ²
1 c	ı-Pr	Н	Me	5b	OAc	4	70	3cb ²
1 d	Et	Me	Me	5b	OAc	3	68	3db ²
1 a	ı-Pr	Н	н	5 c	OMe	4	90	3ac ³
1 b	Et	Me	н	5 c	OMe	5	74	3bc
1 c	ı-Pr	н	Me	5 c	OMe	5	72	3cc
1 d	Et	Me	Me	5 c	OMe	3	59	3dc
1a	1-Pr	н	н	6a	OH	4	80	4aa ²
1b	Et	Me	Н	6a	OH	25	68	4ba ²
1 c	ı-Pr	н	Me	6a	OH	2	91	4ca ²
1 d	Et	Me	Me	6a	OH	3	79	4da ²
1a	1 -Pr	н	н	6b	OAc	4 5	79	4ab ²
1 b	Et	Me	Н	6b	OAc	4 5	88	4bb ²
1 c	ı-Pr	Н	Me	6b	OAc	6	87	4cb ²
1 d	Et	Me	Me	6b	OAc	5	77	4db ²
1a	ı-Pr	Н	Н	6c	OMe	5	95	4ac ³
1 b	Et	Mie	н	6c	OMe	8	92	4bc ³
1 c	ı-Pr	Н	Me	6c	OMe	65	49	4cc
1 d	Et	Me	Me	6 c	OMe	3 5	7 1	4de

Table 1 Experimental conditions and yields of 2-azaanthraquinon-3-ones 3 and 4

Concerning the regiochemistry of the cycloadditions, compounds 3 and 4 are obtained as a single regionsomer A structural elucidation of compounds 3 or 4 (R_3 =OH) was previously² supported by the known directing effect of the 5-hydroxy group of juglone and by the ¹H-NMR spectral data of the mixture of 3 and 4

The cycloadditions being now regiospecific, we report in Table 2 the ¹H-NMR data of each pure regionsomer. It is apparent from this Table that in compounds 3 (R_3 =OH) the peri-OH and the NH signals are more deshielded comparatively to those of 4 Furthermore, the R_1 substituent (H or Me) in 3 is shifted to lower fields while in 4, that is R_2 (H or Me) who is deshielded

The structure of the regionsomers 3 and 4 (R₃=OAc) is assigned after hydrolysis of the acetyl group by 5% aqueous NaOH. Thus, the corresponding hydroxylated derivatives obtained have their ¹H-NMR spectral data identical with those of the hydroxylated compounds prepared respectively from bromojugiones 5 and 6

On the other hand, since the NH and R_1 (H or Me) signals in the acetyl or methoxyl derivatives of 3 (R₃=OAc or OMe) are both shifted to the higher fields while the reverse occurred with the R_2 substituent (H or Me), we assign for these compounds the same regionchemistry

Finally, the fact that the regiospecificity observed is independent on the nature of the 5-substituent in naphthoquinones 5 and 6, confirms the hypothesis that the nucleophilic end of these electron rich 2-azadienes adds exclusively at the unsubstituted carbon of the dienophiles 5 or 6

Compound	NH	$R_1 = H$ or Me	$R_2 = H \text{ or } Me$	$R_3 = OH,$ OAc or OMe
3 a a	12 98	8 47	6 90	12 84
4aa	12 90	8 37	6 97	12 25
3ba	12 85	2 76	6 81	13 11
4ba	12 77	2 74	6 91	12 10
3ca	12 85	8 32	2 46	12 7 7
4ca	12 76	8 24	2 53	12 4 5
3da	12 75	2 74	2 42	13 08
4da	12 65	2 70	2 45	12 35
3ab	12 85	8 33	6 87	2 37
4ab	12 92	8 39	6 82	2 39
3bb	12 74	2 67	6 79	2 36
4bb	12 80	2 75	6 74	2 39
3cb	12 73	8 16	2 47	2 36
4cb	12 76	8 22	2 38	2 38
3db	12 59	2 61	2 39	2 35
4db	12 62	2 70	2 37	2 37
3ac	12 78	8 22	6 83	3 93
4ac	12 80	8 33	6 80	3 95
3bc	12 58	2 68	6 74	3 91
4bc	12 68	2 73	6 72	3 94
3cc	12 58	8 06	2 44	3 92
4cc	12 66	8 16	2 36	3 94
3de	12 44	2 61	2 36	3 90
4de	12 53	2 67	2 28	3 91

Table 2. ¹H-NMR spectral data of 2-azaanthraquinon-3-ones 3 and 4 (300 MHz, DMSO-d₆, 8 ppm)

CONCLUSION

The use of 2-and 3-bromonaphthoquinones in the hetero Diels-Alder reaction of 2-aza-1,3-butadienes affords regiospecifically the 2-azaanthraquinon-3-ones 3 or 4 These results show that the bromine atom exerts a strong regiochemical control on the cycloadditions despite the directing effect of the 5-hydroxy or the 5-methoxy group

Furthermore, the use of this procedure enhanced substantially the yields of the cycloadditions

EXPERIMENTAL SECTION

Meltung points were taken in capillary tube using a Büchi 510 apparatus. The infra-red spectra were performed on a Perkin-Elmer 1310 spectrophotometer ¹H-NMR spectra were recorded on a Bruker AM 300 spectrometer High resolution mass spectra were performed by direct ionisation (EI at 70 eV) on a AE1 MS 902 apparatus Elemental analysis were made at the Centre de Microanalyse du CNRS at Vernaison

Azadienes 1a, 1b and 1c were prepared according to P Bayard procedure⁹ while 1d was described in reference ² 3-Bromo-5-hydroxynaphthoquinone 5a was prepared by treating juglone with bromine in glacial acetic acid ¹⁰ By this procedure we obtained also 13 % of the 2-bromo derivative 6a which was eliminated by recrystallization from acetone The acetyl (5b)¹⁰ and methyl (5c)¹¹ derivatives were prepared as described for quinones 2 (R₃=OAc, OMe) ^{12,13} 2-Bromo-5-acetoxynaphthoquinone 6b was obtained by oxidation of 1,5-diacetoxynaphthalene with N-bromosuccinimide ⁸ Hydrolysis of 6b gave 6a⁸ which was methylated into 6c ¹¹ The melting points of 5 and 6 are identical with the values reported in the literature ^{10,11}

8-Acetoxy-2-aza-9,10-antraquinon-3-one, 3ab14

Azadiene 1a (0 25 g, 1 01 mmol) and 5-acetoxy-3-bromonaphthoquinone 5b (0 2 g, 0 67 mmol) were dissolved in anhydrous chloroform (4 ml) and the solution was heated to reflux for 3 h At the end of the reaction a yellow precipitate was formed After evaporation of chloroform, acetone (5 ml) was added to the residue and the mixture was heated to reflux for 2 h Compound 3ab was recovered by cooling It was separated by filtration and washed twice with acetone (2 ml) and recristallized from this solvent. M p 305-310°C with decomposition, IR (KBr) v 1765, 1690, 1670, 1655 (CO) cm⁻¹, ¹H-NMR (DMSO-d₆, 300 MHz) δ ppm 12 85 (br s, 1H, NH), 8 33 (s, 1H, H-1), 8 16 (d, 1H, J=7 2 Hz, H-8), 7 93 (dd, 1H, J=7 2 and 7 4 Hz, H-7), 7 64 (d, 1H, J=7 4 Hz, H-6), 6 87 (s, 1H, H-4), 2 37 (s, 3H, COCH₃)

5-Acetoxy-2-aza-9,10-anthraquinon-3-one, 4ab14

Following the procedure used to prepare **3ab**, compound **4ab** was obtained from azadiene **1a** and 5acetoxy-2-bromonaphthoquinone **6b** M p 300-310°C with decomposition, IR (KBr) v 1765, 1690, 1665, 1640 (CO) cm⁻¹, ¹H-NMR (DMSO-d₆, 300 MHz) δ ppm 12 92 (br s, 1H, NH), 8 39 (s, 1H, H-1), 8 18 (d, 1H, J=7 3 Hz, H-5), 7 98 (dd, 1H, J=7 3 and 7 4 Hz, H-6), 7 62 (d, 1H, J=7 4 Hz, H-7), 6 82 (s, 1H, H-4), 2 39 (s, 3H, COCH₃)

8-Methoxy-1-methyl-2-aza-9,10-anthraquinon-3-one, 3bc

Following the procedure used to prepare **3ab**, compound **3bc** was obtained from azadiene **1b** and 5methoxy-3-bromonaphthoquinone **5c** M p >300°C, IR (KBr) v 1680, 1650 (CO) cm⁻¹, ¹H-NMR (DMSO-d₆, 300 MHz) δ ppm 12 58 (br s, 1H, NH), 7 77 (dd, 1H, J=6 9 and 8 1 Hz, H-6), 7 72 (d, 1H, J=6 9 Hz, H-5), 7 58 (d, 1H, J=8 1 Hz, H-7), 6.74 (s, 1H, H-4), 3 91 (s, 3H, OCH₃), 2 68 (s, 3H, CH₃-1) Anal Calcd for C₁₅H₁₁NO₄, 0 2 H₂O C, 65 96, H, 4 17, N, 5 13 Found C, 66 26, H, 4 35, N, 5 04 HRMS Calcd for C₁₅H₁₁NO₄ 269 0688 Found 269 0694

8-Methoxy-4-methyl-2-aza-9,10-anthraquinon-3-one, 3cc

Following the procedure used to prepare **3ab**, compound **3cc** was obtained from azadiene 1c and 5methoxy-3-bromonaphthoquinone **5c** M p >300°C, IR (KBr) v 1675, 1660, 1640 (CO) cm⁻¹, ¹H-NMR (DMSO-d₆, 300 MHz) δ ppm 12 58 (br s, 1H, NH), 8 06 (s, 1H, H-1), 7 81 (dd, 1H, J=7 2 and 8 2 Hz, H-6), 7 72 (d, 1H, J=7 2 Hz, H-5), 7 55 (d, 1H, J=8 2 Hz, H-7), 3 92 (s, 3H, OCH₃), 2 44 (s, 3H, CH₃-4) Anal Calcd for C₁₅H₁₁NO₄ C, 66 89, H, 4 12, N, 5 21 Found C, 66 83, H, 4 17, N, 5 20 HRMS Calcd for C₁₅H₁₁NO₄. 269 0688 Found 269 0698

5-Methoxy-4-methyl-2-aza-9,10-anthraquinon-3-one, 4cc

Following the procedure used to prepare 3ab, compound 4cc was obtained from azadiene 1c and 5methoxy-2-bromonaphthoquinone 6c. M p 160-165°C with decomposition, IR (KBr) v 1675, 1645 (CO) cm⁻¹ ¹, ¹H-NMR (DMSO-d₆, 300 MHz) & ppm 12 66 (br s, 1H, NH), 8 16 (s, 1H, H-1), 7 81 (dd, 1H, J=7.5 and 8 3 Hz, H-7), 7 70 (d, 1H, J=7 5 Hz, H-8), 7 53 (d, 1H, J=8 3 Hz, H-6), 3 94 (s, 3H, OCH3), 2 36 (s, 3H, CH3-4) Anal Calco for C15H11NO4, 033 H2O C, 65 54, H, 427, N, 508 Found. C, 65 38, H, 407, N, 5 08 HRMS Calcd for C15H11NO4 269 0688 Found 269 0698

8-Methoxy-1,4-dimethyl-2-aza-9,10-anthraquinon-3-one, 3dc

Following the procedure used to prepare 3ab, compound 3de was obtained from azadiene 1d and 5methoxy-3-bromonaphthoquinone 5c M.p 185-195°C with decomposition, IR (KBr) v 1665, 1645, 1630 (CO) cm⁻¹, ¹H-NMR (DMSO-d₆, 300 MHz) 8 ppm 12 44 (br s, 1H, NH), 7 75 (dd, 1H, J=7 5 and 8 4 Hz, H-6), 7 61 (d, 1H, J=7 5 Hz, H-5), 7 51 (d, 1H, J=8 4 Hz, H-7), 3 90 (s, 3H, OCH3), 2.61 (s, 3H, CH3-1), 2 36 (s, 3H, CH3-4) Anal Calcd for C16H13NO4, 0 33 H2O C, 66 43, H, 4 76, N, 4 84 Found C, 66 46, H, 4 96, N, 4 86 HRMS Calcd for C16H13NO4. 283 0845 Found 283 0855

5-Methoxy-1,4-dimethyl-2-aza-9,10-anthraquinon-3-one, 4dc

Following the procedure used to prepare **3ab**, compound **4dc** was obtained from azadiene **1d** and 5methoxy-2-bromonaphthoquinone 6c Mp >300°C with decomposition, IR (KBr) v 1665, 1645, 1630 (CO) cm⁻¹, ¹H-NMR (DMSO-d₆, 300 MHz) & ppm 12 53 (br s, 1H, NH), 7 77 (dd, 1H, J=77 and 8.4 Hz, H-7), 7 64 (d, 1H, J=7 7 Hz, H-8), 7 47 (d, 1H, J=8 4 Hz, H-6), 3 91 (s, 3H, CH₃O), 2 67 (s, 3H, CH₃-1), 2 28 (s, 3H, CH₃-4) Anal Calcd for C₁₆H₁₃NO₄. C, 67 82, H, 4 63, N, 4 95 Found C, 67 67, H, 4 72, N, 5 05 HRMS Calcd for C16H13NO4. 283 0845 Found 283 0855

REFERENCES AND NOTES

- 1 Sainte, F, Serckx-Poncin, B, Hesbain-Frisque, A -M, Ghosez, L, J. Am. Chem. Soc, 1982, 104, 1428-1430
- 2
- Bouammali, B., Pautet, F., Fillion, H., Heterocycles, 1991, 32, 915-922 Bouammali, B., Pautet, F., Fillion, H., Bull. Soc. Chum Belg, 1992, 101, 337-338 3
- 4 Kelly, T R, Gillard, J W, Goerner, R N Jr, Lyding, T M, J. Am Chem. Soc, 1977, 99, 5513-5514
- Boeckman, R K Jr, Dolak, T M, Culos, K O, J. Am. Chem. Soc, 1978, 100, 7098-7100 5
- Mc Namara, J , Kishi, Y , J. Am. Chem Soc , 1982, 104, 7371-7372 6
- 7
- Gesson, J P, Jacquesy, J C, Mondon, M, Nouveau Journal de Chunie, **1983**, 7, 205-211 Grunwell, J R, Kanpides, A, Wigal, C T, Heinzman, S W, Parlow, J, Surso, J A, Clayton, L, Fleitz, F J; Daffner, M, Stevens, J E, J. Org. Chem., **1991**, 56, 91-95 8
- ٥ Bayard, P, Sainte, F, Beaudegnies, R., Ghosez, L, Tetrahedron Lett, 1988, 29, 3799-3802
- Thomson, R H, J Org. Chem, 1948, 13, 377-383 10
- Hannan, R L, Barber, R A, Rapoport, H, J. Org. Chem, 1979, 44, 2153-2158 11
- 12
- Bernthsen, A, Semper, A, Ber, 1885, 18, 203-213 Garden, J F, Thomson, R H, J. Chem. Soc., 1957, 2483-2489 13
- 14 The present work let us to assign the correct regiochemistry for **3ab** and **4ab**